11 research outputs found

    High-Performance Computing for SKA Transient Search: Use of FPGA based Accelerators -- a brief review

    Full text link
    This paper presents the High-Performance computing efforts with FPGA for the accelerated pulsar/transient search for the SKA. Case studies are presented from within SKA and pathfinder telescopes highlighting future opportunities. It reviews the scenario that has shifted from offline processing of the radio telescope data to digitizing several hundreds/thousands of antenna outputs over huge bandwidths, forming several 100s of beams, and processing the data in the SKA real-time pulsar search pipelines. A brief account of the different architectures of the accelerators, primarily the new generation Field Programmable Gate Array-based accelerators, showing their critical roles to achieve high-performance computing and in handling the enormous data volume problems of the SKA is presented here. It also presents the power-performance efficiency of this emerging technology and presents potential future scenarios.Comment: Accepted for JoAA, SKA Special issue on SKA (2022

    Wavelet-based Characterization of Small-scale Solar Emission Features at Low Radio Frequencies

    Get PDF
    Low radio frequency solar observations using the Murchison Widefield Array have recently revealed the presence of numerous weak short-lived narrowband emission features, even during moderately quiet solar conditions. These nonthermal features occur at rates of many thousands per hour in the 30.72 MHz observing bandwidth, and hence necessarily require an automated approach for their detection and characterization. Here, we employ continuous wavelet transform using a mother Ricker wavelet for feature detection from the dynamic spectrum. We establish the efficacy of this approach and present the first statistically robust characterization of the properties of these features. In particular, we examine distributions of their peak flux densities, spectral spans, temporal spans, and peak frequencies. We can reliably detect features weaker than 1 SFU, making them, to the best of our knowledge, the weakest bursts reported in literature. The distribution of their peak flux densities follows a power law with an index of -2.23 in the 12-155 SFU range, implying that they can provide an energetically significant contribution to coronal and chromospheric heating. These features typically last for 1-2 s and possess bandwidths of about 4-5 MHz. Their occurrence rate remains fairly flat in the 140-210 MHz frequency range. At the time resolution of the data, they appear as stationary bursts, exhibiting no perceptible frequency drift. These features also appear to ride on a broadband background continuum, hinting at the likelihood of them being weak type-I bursts

    Hydrogen Intensity and Real-Time Analysis Experiment: 256-element array status and overview

    No full text
    International audienceThe Hydrogen Intensity and Real-time Analysis Experiment (HIRAX) is a radio interferometer array currently in development, with an initial 256-element array to be deployed at the South African Radio Astronomy Observatory Square Kilometer Array site in South Africa. Each of the 6 m, f  /  0.23 dishes will be instrumented with dual-polarization feeds operating over a frequency range of 400 to 800 MHz. Through intensity mapping of the 21 cm emission line of neutral hydrogen, HIRAX will provide a cosmological survey of the distribution of large-scale structure over the redshift range of 0.775  <  z  <  2.55 over ∼15,000 square degrees of the southern sky. The statistical power of such a survey is sufficient to produce ∼7  %   constraints on the dark energy equation of state parameter when combined with measurements from the Planck satellite. Additionally, HIRAX will provide a highly competitive platform for radio transient and HI absorber science while enabling a multitude of cross-correlation studies. We describe the science goals of the experiment, overview of the design and status of the subcomponents of the telescope system, and describe the expected performance of the initial 256-element array as well as the planned future expansion to the final, 1024-element array
    corecore